Five New Biflavonoids from Daphne aurantiaca

by Shuang Liang^a)^b), Yun-Heng Shen^c), Jun-Mian Tian^c), Yi Feng^b), Zhi Xiong^b), and Wei-Dong Zhang^{*a})^c)

^a) School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, P. R. China (phone: +86-21-81871244; fax: +86-21-81871244; e-mail: wdzhangy@hotmail.com)
^b) Shanghai University of Traditional Chinese Medicine Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai 201203, P. R. China
^c) Department of Natural Product Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China

Five new biflavonoids, 1-5, were isolated from the stem bark of *Daphne aurantiaca*. The structures were elucidated as 2,2"-bisteppogenin (1), 2,2"-bisteppogenin 7-*O*- β -glucopyranoside (2), 2"'-dehydroxy-2,2"-bisteppogenin 7-*O*- β -glucopyranoside (4), and 7-methoxyneochamaejasmin B (5) on the basis of spectral analyses.

Introduction. – Daphne aurantiaca DIELS is a common evergreen shrub native to Yunnan and Sichuan provinces in China. Its stem bark is used for the treatment of injuries from falls and bruises in folk medicine [1]. In our previous study of D. aurantiaca, the occurrence of 17 terpenoids had been reported [2]. In the course of our study on the constituents of thymelaeaceous plants [2–5], five new biflavonoids, **1–5** (see Fig. 1), were isolated from the title plant. Here, we report the isolation and structure elucidation of the five new compounds.

Results and Discussion. – 2,2"-Bisteppogenin (1) was obtained as a brown oil (MeOH). The empirical molecular formula, $C_{30}H_{22}O_{12}$, was established by HR-ESI-MS (m/z 573.1034 ($[M - H]^-$)). The UV spectrum had two strong maxima in the shortwave region (at 226 and 294 nm) and an ill-defined maximum in the long-wave region (at 335 nm), which was similar to that of steppogenin (=2',4',5,7-tetrahydroxyflavanone) [6]. The assignments of the ¹H- and ¹³C-NMR data (*Table 1*) were achieved by comparison with the data of steppogenin [7], and confirmed by COSY, HSQC, HMBC, and NOESY experiments.

The ¹³C-NMR and DEPT spectra of **1** revealed 15 C-atom resonances, including those of seven CH groups and of eight quaternary C-atoms, which suggested that **1** would be a symmetric structure. In the ¹H-NMR spectrum, three aromatic H-atom signals in an *ABX* pattern (δ (H) 6.27 (*d*, *J* = 2.0, H–C(3')), 6.20 (*dd*, *J* = 8.4, 2.0, H–C(5')), and 6.61 (*d*, *J* = 8.4, H–C(6'))) indicated a 1,2,4-trisubstituted aromatic ring [7], and other two aromatic H-atom signals (δ (H) 6.20 (*d*, *J* = 2.0, H–C(6'')) and 5.79 (*d*, *J* = 2.0, H–C(6'')) indicated a 1,3,4,5-tetrasubstituted aromatic ring. The NMR data of **1** (*Table 1*) revealed the presence of a CO group (δ (C) 198.9 (C(4))), an O-bearing CH₂ group (δ (C) (78.8, C(2)), and δ (H) 6.24 (br. *s*, H–C(2))), and a CH group (δ (C)

^{© 2011} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Structures of compounds 1-5

49.9 (C(3)), and δ (H) 2.99 (br. *s*, H–C(3))). The NMR spectra of **1** were analogous to those of steppogenin [7], except for the signals due to a CH group (δ (C) 49.9 (C(3))) instead of those due to a CH₂ group (δ (C) 42.3 (C(3))) in steppogenin. Thus, compound **1** was determined as 2,2"-bisteppogenin.

Compound **2** had a molecular formula $C_{36}H_{32}O_{17}$ as deduced from HR-ESI-MS (m/z 735.1580 ($[M - H]^-$)). The assignments of the ¹H- and ¹³C-NMR data (*Table 1*) were accomplished by comparison with the data of compound **1**, and confirmed by COSY, HSQC, HMBC, and NOESY experiments.

In the ¹H-NMR spectrum, signals of two pairs of aromatic H-atoms in an *ABX* pattern (δ (H) 6.30 (d, J = 2.0, 2 H), 6.22 (dd, J = 8.4, 2.0, 2 H), and 6.65 (d, J = 8.4, 2 H)) revealed two 1,2,4-trisubstituted aromatic rings, and those of other two pairs of aromatic H-atoms in an *AX* pattern (δ (H) 6.17 (d, J = 2.0, 2 H), and 5.86 (d, J = 2.0, 1 H); 6.12 (d, J = 2.0, 2 H), and 5.81 (d, J = 2.0, 1 H)) established the presence of two 1,3,4,5-tetrasubstituted aromatic rings. The ¹³C-NMR and DEPT data of **2** (*Table 1*) contained C-atom resonances due to two CO groups (δ (C) 199.6 (C(4)), and 198.6 (C(4''))), two O-bearing CH₂ groups (δ (C) 78.0 (C(2) and C(2''))), two CH groups

	1		2		3	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
H–C(2)	6.24 (br. s)	78.8	6.20 (br. s)	78.0	6.15 (br. s)	82.3
H-C(3)	2.99 (br. s)	49.9	3.07 (br. s)	49.9	2.80 (br. s)	50.4
C(4)		198.9		199.6		198.9
C(5)		165.4		165.3		165.5
H–C(6)	6.20 (d, J = 2.0)	95.9	6.17 (d, J = 2.0)	97.9	6.20 (d, J = 2.0)	96.1
C(7)		167.9		166.5		168.2
H–C(8)	5.79 (d, J = 2.0)	95.9	5.86 (d, J = 2.0)	96.9	5.79 (d, J = 2.0)	96.0
C(9)		164.8		164.6		164.9
C(10)		103.5		103.3		103.4
C(1')		116.2		116.0		116.3
C(2')		158.0		157.9		159.4
H–C(3′)	6.27 (d, J = 2.0)	103.6	6.30 (d, J = 2.0)	103.3	6.30 (d, J = 2.0)	103.3
C(4′)		156.0		158.0		157.9
H–C(5′)	6.20 (dd, J = 8.4, 2.0)	108.4	6.22 (dd, J = 8.4, 2.0)	108.8	6.26 (dd, J = 8.4, 2.0)	108.4
H–C(6′)	6.61 (d, J = 8.4)	132.3	6.65 (d, J = 8.4)	130.5	6.66 (d, J = 8.4)	130.7
H–C(2")	6.24 (br. s)	78.8	6.20 (br. s)	78.0	6.15 (br. s)	82.3
H–C(3")	2.99 (br. s)	49.9	3.07 (br. s)	49.9	2.80 (br. s)	50.4
C(4")		198.9		198.6		198.0
C(5")		165.4		164.7		165.4
H–C(6")	6.20 (d, J = 2.0)	95.9	6.12 (d, J = 2.0)	96.6	6.20 (d, J = 2.0)	97.1
C(7")		167.9		167.9		168.2
H–C(8")	5.79(d, J = 2.0)	95.9	5.81 (d, J = 2.0)	95.9	5.79 (d, J = 2.0)	96.8
C(9")		164.8		164.7		164.4
C(10'')		103.5		105.0		103.5
C(1''')		116.2		115.8		129.1
H–C(2''')		158.0		159.9	6.87 (d, J = 8.4)	130.4
or C(2''')						
H–C(3′)	6.27 (d, J = 2.0)	103.6	6.30 (d, J = 2.0)	103.3	6.71 (d, J = 8.4)	116.5
C(4''')		156.0		160.0		159.4
H–C(5''')	6.20 (dd, J = 8.4, 2.0)	108.4	6.22 (dd, J = 8.4, 2.0)	108.8	6.71 (d, J = 8.4)	116.5
H–C(6''')	6.61 (d, J = 8.4)	132.3	6.65 (d, J = 8.4)	130.5	6.87 (d, J = 8.4)	130.4
H–C(1'''')			4.97 (d, J = 7.2)	101.1		
H–C(2'''')			3.41 - 3.47 (m)	74.6		
H–C(3'''')			3.41 - 3.47 (m)	77.7		
H–C(4'''')			3.41 - 3.47 (m)	71.1		
H–C(5'''')			3.41 - 3.47 (m)	78.1		
$CH_2(6'''')$			3.68 (dd, J = 4.8, 12.0),	62.3		
			3.87 (dd, J = 1.6, 12.0)			

Table 1. ¹*H*- and ¹³*C*-*NMR Data of Compounds* **1**–**3**. In CD₃OD, δ in ppm, *J* in Hz. C-Atom numbering as indicated in *Fig. 1*.

 $(\delta(C)$ 49.9 (C(3) and C(3"))), and a glucose unit ($\delta(C)$ 101.1, 74.6, 77.7, 71.1, 78.1, and 62.3). The anomeric H-atom of the glucose moiety was determined to be β -oriented on the basis of the coupling constant ($\delta(H)$ 4.97 (d, J = 7.2)). The NMR data were very similar to those of **1**, except for the additional signals due to a β -glucosyl group. Thus, compound **2** was deduced as 2,2"-bisteppogenin 7-*O*- β -glucopyranoside.

Compound **3** was obtained as a brown oil (MeOH). The empirical molecular formula $C_{30}H_{22}O_{11}$ was established by HR-ESI-MS (m/z 557.1050 ($[M - H]^-$)). The assignments of the ¹H- and ¹³C-NMR data (*Table 1*) were achieved by comparison with the data of **1**, and confirmed by COSY, HSQC, HMBC, and NOESY experiments.

In the ¹H-NMR spectrum, three aromatic H-atom signals with an *ABX* pattern ($\delta(H)$ 6.30 (d, J = 2.0, 1 H), 6.26 (dd, J = 8.4, 2.0, 1 H), and 6.66 (d, J = 8.4, 1 H)) indicated a 1,3,4-trisubstituted aromatic ring. Four aromatic H-atom signals with an A_2B_2 pattern ($\delta(H)$ 6.87 (d, J = 8.4, 2 H), and 6.71 (d, J = 8.4, 2 H)) discolosed the presence of a 1,2,3,5-tetrasubstituted aromatic ring. Moreover, two 1,3,4,5-tetrasubstituted aromatic ring aromatic H-atoms in an *AX* pattern ($\delta(H)$ 6.20 (d, J = 2.0, 2 H), and 5.79 (d, J = 2.0, 2 H)). The ¹H-, ¹³C-, and DEPT-NMR data of **3** (*Table 1*) contained signals assignable to two CO groups ($\delta(C)$ 198.9 (C(4)), and 198.0 (C(4''))), two O-bearing CH₂ groups ($\delta(C)$ 82.3 (C(2) and C(2''))), and two CH groups ($\delta(C)$ 50.4 (C(3) and C(3''))). The NMR spectra were very similar to those of **1**, except that a 1,3,4-trisubstituted aromatic rings in **1**. Thus, compound **3** was determined as 2'''-dehydroxy-2,2''-bisteppogenin.

Compound **4** had the molecular formula $C_{36}H_{32}O_{16}$ as deduced from HR-ESI-MS $(m/z \ 719.1634 \ ([M - H]^-))$. The NMR data (Table 2) were very similar to those of **3**, expect for the additional signals due to a β -glucosyl group. Thus, compound **4** was deduced as 2'''-dehydroxy-2,2''-bisteppogenin 7-O- β -glucopyranoside.

The relative configurations of compounds 1-4 were deduced by the coupling constants and NOESY spectra. In compound 4, H–C(3") and H–C(2") gave rise to typical *doublets* with coupling constants of 12.0 Hz; nevertheless, signals of both H–C(2) and H–C(3) were broad *singlets*. These implied that the relative configurations of H–C(2), H–C(3), H–C(3"), and H–C(2") in 4 were β , β , β , and α , respectively, which was further confirmed by the NOESY correlations H–C(2)/H–C(3) and H–C(3)/H–C(3"), and especially by the NOE H–C(2)/H–C(3") (*Fig.* 2). Similarly, the relative configurations of H–C(2), H–C(3), H–C(2), H–C(3), H–C(2"), and H–C(3") in compounds 1–3 were determined as β , based on the small coupling constants, and confirmed by the NOESY correlations H–C(2)/H–C(3"), and H–C(2)/H–C(3), H–C(2)/H–C(3"), H–C(2")/H–C(3"), H–C(2")/H–C(3"), and H–C(2")/H–C(3").

The HR-ESI-MS of 7-methoxyneochamaejasmin B (5) exhibited a *pseudo*molecular-ion peak at m/z 557.1434 ($[M+H]^+$), in accordance with the molecular formula $C_{31}H_{24}O_{10}$. The assignments of the ¹H- and ¹³C-NMR data (*Table 2*) were achieved by comparison with the data of neochamaejasimin B [8], and confirmed by COSY, HSQC, HMBC, and NOESY experiments.

The ¹³C-NMR spectrum exhibited 30 C-atom resonances with typical features of a flavonoid. Considering its molecular weight, **5** should be a biflavonoid. In the ¹H-NMR spectrum, signals of two pairs of aromatic H-atoms with an A_2B_2 coupling pattern (δ (H) 7.16 (d, J = 8.4, 2 H), and 6.77 (d, J = 8.4, 2 H); 7.03 (d, J = 8.4, 2 H), and 6.75 (d, J = 8.4, 2 H)), together with those of two pairs of aromatic H-atoms with an AX coupling pattern (δ (H) 5.96 (d, J = 1.2, 1 H) and 5.83 (d, J = 1.2, 1 H), as well as 5.77 (d, J = 1.2, 1 H) and 5.75 (d, J = 1.2, 1 H)) disclosed that both flavonoid units contained a 1',4'-disubstituted *B* ring and a 5,7-disubtituted *A* ring. Detailed comparison of the NMR data of **5** (*Table 2*) with those known neochamaejasmin B

	4		5		
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	
H–C(2)	5.76 (br. s)	85.2	5.53 (d, J = 4.4)	81.5	
H-C(3)	2.86 (br. s)	49.9	3.33 (dd, J = 3.2, 4.4)	49.6	
C(4)		199.7		196.1	
C(5)		166.7		165.2	
H-C(6)	5.86 $(d, J = 2.0)$	96.8	5.96 (d, J = 1.2)	96.4	
C(7)		168.1		168.2	
H–C(8)	5.80 (d, J = 2.0)	96.0	5.83 (d, J = 1.2)	96.0	
C(9)		164.9		163.3	
C(10)		105.0		103.8	
C(1')		115.9		128.6	
H-C(2') or $C(2')$		160.3	7.16 (d, J = 8.4)	128.7	
H–C(3')	6.30 (d, J = 2.0)	103.3	6.77 (d, J = 8.4)	114.8	
C(4')		158.0		158.6	
H–C(5')	6.25 (dd, J = 8.4, 2.0)	108.3	6.77 (d, J = 8.4)	114.8	
H–C(6')	6.89 (d, J = 8.4)	130.4	7.16(d, J = 8.4)	128.7	
H–C(2")	5.75 (d, J = 12.0)	85.2	5.16 (d, J = 8.8)	82.9	
H–C(3")	3.00 (d, J = 12.0)	51.3	3.23 (dd, J = 3.2, 8.8)	50.8	
C(4'')		197.8		198.6	
C(5")		165.3		165.5	
H–C(6")	6.16 (d, J = 2.0)	98.0	5.77 $(d, J = 1.2)$	97.3	
C(7")		168.1		168.4	
H–C(8")	6.11 (d, J = 2.0)	97.1	5.75 $(d, J = 1.2)$	97.1	
C(9'')		164.3		165.1	
C(10")		103.3		105.1	
C(1''')		129.0		130.2	
H–C(2''')	6.89 (d, J = 8.4)	130.4	7.03 (d, J = 8.4)	130.2	
H–C(3')	6.72 (d, J = 8.4)	116.5	6.75 (d, J = 8.4)	116.4	
C(4''')		159.4		161.4	
H–C(5''')	6.72 (d, J = 8.4)	116.5	6.75 (d, J = 8.4)	116.4	
H–C(6''')	6.67 (d, J = 8.4)	130.4	7.03 (d, J = 8.4)	130.2	
H–C(1'''')	4.97 (d, J = 7.2)	101.1			
H–C(2'''')	3.37 - 3.47(m)	74.7			
H–C(3'''')	3.37 - 3.47(m)	77.8			
H–C(4'''')	3.37 - 3.47(m)	71.1			
H–C(5'''')	3.37 - 3.47(m)	78.2			
CH ₂ (6'''')	3.68 (dd, J = 4.8, 12.0),	62.3			
-	3.86 (dd, J = 1.2, 12.0)				
MeO			3.75 (s)	55.7	

Table 2. ¹*H*- and ¹³*C*-*NMR* Data of Compounds **4** and **5**. In CD₃OD, δ in ppm, *J* in Hz. C-Atom numbering as indicated in *Fig. 1*.

[8] indicated that the structure of **5** had one additional MeO group than neochamaejasimin B, and the signal of the MeO group ($\delta(H)$ 3.75) showed correlation with a C-atom signal at $\delta(C)$ 168.2 (C(7)) in the HMBC spectrum, suggesting that the MeO group was at C(7), which was further confirmed by COSY, HSQC, HMBC, and NOESY experiments (*Fig. 2*). Thus, compound **5** was determined as 7-methoxyneochamaejasmin B.

Fig. 2. Key HMBC $(H \rightarrow C)$ and NOESY $(H \leftrightarrow H)$ correlations of compounds 3, 4, and 5

This work was supported by *NCET Foundation*, NSFC(30725045), the *Special Program for New Drug Innovation of the Ministry of Science and Technology*, P.R. China (2009ZX09311-001, 2008ZX09308-005), *Shanghai Leading Academic Discipline Project* (B906), and in part by the *Scientific Foundation of Shanghai China* (09DZ1975700, 09DZ1971500).

Experimental Part

General. Column chromatography (CC): silica gel H (SiO₂, 10–40 µm; *Zhifu Huangwu Silica Gel D* & *R Plant*, Yantai, P. R. China), *Sephadex LH-20 (Pharmacia)*, and *ODS (Merck)*. TLC: Plates precoated with silica gel HF_{254} (5–7 µm; *Zhifu Huangwu Silica Gel D & R Plant*, Yantai, P. R. China). Optical rotations: *Perkin-Elmer 343* polarimeter. UV Spectra: *Shimadzu UV-2550* UV/VIS spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: *Bruker Vector-22* spectrometer, KBr pellets, in cm⁻¹. NMR Spectra: *Bruker-DRX-400* spectrometer; at 400 (¹H) and 100 MHz (¹³C, DEPT); (D₆)DMSO solns. with Me₄Si as internal standard, δ in ppm, *J* in Hz. HR-TOF-MS: ESI mode; *Q-Tof-Micro-Mass* spectrometer in *m/z*.

Plant Material. The plant material was collected in July 2006 in Kunming City, Yunnan Province, China, and identified as *Daphne aurantiaca* by Prof. *L.-S. Xie*, Kunming Institute of Botany. A voucher specimen has been deposited with the Herbarium of the School of Pharmacy, Second Military Medical University, Shanghai (No. 200607-11).

Extration and Isolation. The air-dried and powdered stem bark of *D. aurantiaca* (7.0 kg) was percolated with MeOH (25 l) at r.t. for 3×4 h. The solvent was evaporated under vacuum. Then, the extract was suspended in H₂O and partitioned with petroleum ether, AcOEt, and BuOH successively. The AcOEt extract (400 g) was subjected to CC (SiO₂ (1 kg); 9×100 cm column; CHCl₃/MeOH 100:1, 50:1,25:1,10:1,8:1, and 5:1): *Frs. 1–6. Fr. 2* (35.0 g) was rechromatographed on CC (SiO₂ (1 kg); 9×100 cm column; CHCl₃/MeOH 100:1 and 50:1): *Frs. 2–1–2-9. Fr. 2–2* was subjected to CC (*ODS* (100 g), MeOH/H₂O 20:80–70:30): impure compound **5**, which was further purified by CC (*Sephadex LH-20*)

(200 ml); MeOH): compound **5** (40 mg). By the same procedures, compounds **1** (25 mg) and **3** (80 mg) were obtained from *Fr.* 2–4. *Fr.* 4 (50.0 g) was rechromatographed on CC (SiO₂ (1 kg); 9×100 cm column; CHCl₃/MeOH 25 : 1 and 10 : 1): *Frs.* 4-1–4-7. *Fr.* 4-3 was subjected to CC (*ODS* (100 g); MeOH/H₂O 30 : 70–60 : 40): impure compound **2**, which was further purified by CC (*Sephadex LH-20* (200 ml); MeOH): compound **2** (30 mg). By the same procedures, compound **4** (4 mg) was obtained from *Fr.* 4–5.

2,2"-Bisteppogenin (=(2R*,2'R*,3R*,3'R*)-2,2'-Bis(2,4-dihydroxyphenyl)-2,2',3,3'-tetrahydro-5,5',7,7'-tetrahydroxy-4H,4'H-3,3'-bichromene-4,4'-dione; **1**). Brown viscous oil. [α]₁^B = -28 (c = 0.18, MeOH). UV (MeOH): 226 (3.66), 294 (3.52), 335 (1.80). IR: 3232, 1634, 1458, 1266, 1162, 1087, 978, 833. ¹H- and ¹³C-NMR: see *Table 1*. HR-ESI-MS (neg.): 573.1034 ([M-H]⁻, C₃₀H₂₁O₁₂; calc. 573.1033).

2,2"-Bisteppogenin 7-O- β -Glucopyranoside (=(2R*,2'R*,3R*,3'R*)-2,2'-Bis(2,4-dihydroxyphenyl)-3,3',4,4'-tetrahydro-5,5',7'-trihydroxy-4,4'-dioxo-2H,2'H-3,3'-bichromen-7-yl β -D-Glucopyranoside; **2**). Brown viscous oil. [a]₁^B = -81 (c=0.08, MeOH). UV (MeOH): 228 (2.67), 290 (2.54), 334 (0.82). IR: 405, 1636, 1457, 1249,1169, 1078, 977, 834. ¹H- and ¹³C-NMR: see *Table 1*. HR-ESI-MS (neg.): 735.1580 ([M – H]⁻, C₃₆H₃₁O₁₇; calc. 735.1561).

2^{'''}-Dehydroxy-2,2^{''}-bisteppogenin (=(2R*,2'R*,3R*,3'R*)-2-(2,4-Dihydroxyphenyl)-2,2',3,3'-tetrahydro-5,5',7,7''-tetrahydroxy-2'-(4-hydroxyphenyl)-4H,4'H-3,3'-bichromene-4,4'-dione; **3**). Bown viscous oil. [a]₁^B = -78 (c = 0.08, MeOH). UV (MeOH): 227 (2.90), 282 sh (2.68), 294 (2.72), 332 (1.06); IR: 3359, 1633, 1458, 1273, 1161, 1085, 978, 834. ¹H- and ¹³C-NMR: see *Table 1*. HR-ESI-MS (neg.): 557.1050 ([M – H]⁻, C₃₀H₂₁O₁₁; calc. 557.1084).

2^{'''}-Dehydroxy-2,2^{''}-bisteppogenin 7-O-β-Glucopyranoside (=(2R*,2'S*,3R*,3'R*)-2-(2,4-Dihydroxy-phenyl)-3,3',4,4'-tetrahydro-5,5',7'-trihydroxy-2'-(4-hydroxyphenyl)-4,4'-dioxo-2H,2'H-3,3'-bichromen-7-yl β-D-Glucopyranoside; **4**). Brown viscous oil. [a]₁^B = -218 (c = 0.07, MeOH). UV (MeOH): 227 (3.69), 294 (3.63), 336 (2.03). IR: 3382, 1636, 1456, 1286, 1168, 1082, 977, 833. ¹H- and ¹³C-NMR: see *Table* 2. HR-ESI-MS (neg.): 719.1634 ([M – H]⁻, C₃₆H₃₁O₁₆; calc. 719.1612).

7-Methoxyneochamaejasmin B (=(2R*,2'S*,3S*,3'S*)-2,2',3,3'-Tetrahydro-5,5',7-trihydroxy-2,2'bis(4-hydroxyphenyl)-7'-methoxy-4H,4'H-3,3'-bichromene-4,4'-dione; **5**). Brown viscous oil. [a]₁^B = +185 (c = 0.33, MeOH). UV (MeOH): 227 (3.48), 282 sh (3.10), 298 (3.13), 338 (1.91). IR: 3406, 2931, 1638, 1463, 1250, 1159, 1086. ¹H- and ¹³C-NMR: see *Table* 2. HR-ESI-MS (pos.): 557.1434 ([M + H]⁺, C₃₁H₂₅O₁/₁; calc. 557.1448).

REFERENCES

- [1] C. Z. Gu, 'Flora Reipubicae Popularis Sinicae', Science Press, Beijing, 1999, Vol. 52, p. 361-364.
- [2] S. Liang, Y.-H. Shen, Y. Feng, J.-M. Tian, X.-H. Liu, Z. Xiong, W.-D. Zhang, J. Nat. Prod. 2010, 73, 532.
- [3] S. Liang, Y.-H. Shen, J.-M. Tian, Z.-J. Wu, H.-Z. Jin, W.-D. Zhang, S.-K. Yan, J. Nat. Prod. 2008, 71, 1902.
- [4] S. Liang, Y.-H. Shen, J.-M. Tian, Z.-J. Wu, H.-Z. Jin, W.-D. Zhang, S.-K. Yan, *Helv. Chim. Acta* 2009, 92, 133.
- [5] S. Liang, J. Tang, Y.-H. Shen, H.-Z. Jin, J.-M. Tian, Z.-J. Wu, W.-D. Zhang, S.-K. Yan, Chem. Pharm. Bull. 2008, 56, 1729.
- [6] O. M. Sotnikova, R. K. Chagovets, V. I. Litvinenko, Khim. Prir. Soedin. 1968, 4, 82.
- [7] H. N. El-Sohly, A. Joshi, X.-C. Li, S. A. Ross, Phytochemistry 1999, 52, 141.
- [8] M. Niwa, G.-Q. Liu, H. Tatematsu, Y. Hirata, Tetrahedron Lett. 1984, 25, 3735.

Received October 18, 2010